A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context

نویسندگان

  • Martin T. Edwards
  • Stuart C. G. Rison
  • Neil G. Stoker
  • Lorenz Wernisch
چکیده

An important step in understanding the regulation of a prokaryotic genome is the generation of its transcription unit map. The current strongest operon predictor depends on the distributions of intergenic distances (IGD) separating adjacent genes within and between operons. Unfortunately, experimental data on these distance distributions are limited to Escherichia coli and Bacillus subtilis. We suggest a new graph algorithmic approach based on comparative genomics to identify clusters of conserved genes independent of IGD and conservation of gene order. As a consequence, distance distributions of operon pairs for any arbitrary prokaryotic genome can be inferred. For E.coli, the algorithm predicts 854 conserved adjacent pairs with a precision of 85%. The IGD distribution for these pairs is virtually identical to the E.coli operon pair distribution. Statistical analysis of the predicted pair IGD distribution allows estimation of a genome-specific operon IGD cut-off, obviating the requirement for a training set in IGD-based operon prediction. We apply the method to a representative set of eight genomes, and show that these genome-specific IGD distributions differ considerably from each other and from the distribution in E.coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome.

We present a computational method for operon prediction based on a comparative genomics approach. A group of consecutive genes is considered as a candidate operon if both their gene sequences and functions are conserved across several phylogenetically related genomes. In addition, various supporting data for operons are also collected through the application of public domain computer programs, ...

متن کامل

Operon prediction using both genome-specific and general genomic information

We have carried out a systematic analysis of the contribution of a set of selected features that include three new features to the accuracy of operon prediction. Our analyses have led to a number of new insights about operon prediction, including that (i) different features have different levels of discerning power when used on adjacent gene pairs with different ranges of intergenic distance, (...

متن کامل

ODB: a database of operons accumulating known operons across multiple genomes

Operon structures play an important role in co-regulation in prokaryotes. Although over 200 complete genome sequences are now available, databases providing genome-wide operon information have been limited to certain specific genomes. Thus, we have developed an ODB (Operon DataBase), which provides a data retrieval system of known operons among the many complete genomes. Additionally, putative ...

متن کامل

Operon prediction for sequenced bacterial genomes without experimental information.

Various computational approaches have been proposed for operon prediction, but most algorithms rely on experimental or functional data that are only available for a small subset of sequenced genomes. In this study, we explored the possibility of using phylogenetic information to aid in operon prediction, and we constructed a Bayesian hidden Markov model that incorporates comparative genomic dat...

متن کامل

Operon prediction based on SVM

The operon is a specific functional organization of genes found in bacterial genomes. Most genes within operons share common features. The support vector machine (SVM) approach is here used to predict operons at the genomic level. Four features were chosen as SVM input vectors: the intergenic distances, the number of common pathways, the number of conserved gene pairs and the mutual information...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005